
親指二軸ジョイスティックによる
ホームポジション維持型ポインティングデバイスの開発

•何を作ったか?
oArduino Nano（USB-CDC/シリアル）を入力源とする
Linux向けの自作ポインティングデバイスを開発した

oユーザーデーモンではなく、Linuxカーネルモジュールとして実装

oinput subsystem に仮想マウスを登録し、
カーソル移動・スクロール・クリック・ズームを扱える設計

•リポジトリはここにあります。

https://github.com/mikio815/nanostick-kmod

https://github.com/mikio815/nanostick-kmod
https://github.com/mikio815/nanostick-kmod
https://github.com/mikio815/nanostick-kmod
https://github.com/mikio815/nanostick-kmod
https://github.com/mikio815/nanostick-kmod

入力がGUIに反映される流れ

①ハード

↓ （普通は）HID Report 今回は別

②デバドラ、ldiscなど（USB, HIDドライバ類） ⇦これ作りました

↓ input_report_rel(), input_report_key(), など..

③Input subsystem, evdev

↓ /dev/input/eventX に移動などの値を持ったイベントが飛ぶ

④libinput, compositor(Waylandの場合)

↓ イベントを読んでカーソルなどを更新

⑤GUI

Arduino NanoはCH340というUSBモジュールを介している

→標準的な入力のプロトコルとして求められるHID形式ではバイ
ト列は送れない

→Arduino Nano に HID デバイスとして振る舞うUSB ポートを増
設すれば、HIDとして出力して読むことはできる

しかし、普通にHIDを読んでPC側で解釈するだけでは実装に新規
性がなくあまり面白くない

→HIDレポートではない従来のUSB-CDCの形式のまま受け取り、
それをモジュールで独自の入力プロトコルとして解釈したい

何をする必要があるか？

・CH340から受け取った入力はカーネル内の

”ch341.ko”というドライバによって/dev/ttyUSBに流れてくる

・ttyUSBの内容をいい感じにパースして送ってくれるユーザー
デーモンを書けば全て解決するが、つまらない

→どうにかして/dev/ttyUSBをカーネルから読んで全部やらせる

じゃあどう流すか
• ドライバ自体(ch341.ko)をラップして、/dev/ttyUSBだけではなくinput

subsystemにも直接流すように改造してしまえばいいのでは？

→これは多分苦しいのでやりたくない

・ch341などからUSB-CDCを剥がす層だけ流用して、別で直接inputに流せる
ドライバ作ればいいのでは？

→発表の4日前に気づいた

実装量を少なくしたかったので、

ldisc(Line Discipline)を置き換え

てttyからinput subsystemへと渡す

ldisc(Line Discipline)とは何か

・ttyから受信したバイト列をどう解釈するかの中間層

→改行処理、エコーバックなど

・デフォルトはN_TTY

・CH340が投げてくるtty(/dev/ttyUSB?)のfdに対応する

ldiscだけ差し替えて、バイト列がinput subsystemにも

流れるようにする

ldiscを採用するメリット

・既存のドライバ(ch341.koなど)を流用できる

→実装量が少ない

・ttyからinput_relに爆速で流せる

ユーザーデーモンはより簡単だがなんかカッコよくない

ch341の改造はなかなか辛い＋将来の更新で破滅する可能性がある

プロトコルの詳細

• フレーム固定16バイト・LE
バイト 長さ フィールド名 サイズ

 0 2 magic u16 マジックナンバー

 2 2 seq u16 パケットの順番管理

 4 2 lx s16 左スティックのX軸

 6 2 ly s16 左スティックのY軸

 8 2 rx s16 右スティックのX軸

10 2 ry s16 右スティックのY軸

12 1 buttons u8 左右ボタンの押されたフラグ

13 1 flags u8 予約用

14 2 crc16 u16 CRC-16/CCITT-FALSEでエラー検出

ここで問題がある

ldiscの切り替えは基本的にユーザーランドから、対象のttyに
対して

ioctl(fd, TIOCSETD, &ldisc_num);

を呼ぶ必要がある

fd：対象のtty,
TIOCSETD：ldiscを切り替えるコマンド
$ldisc_num：切り替え先のldiscのポインタ

• カーネルモジュールが書きたかっただけではあるので、

ldiscの切り替えもカーネルに任せるのは諦めてsystemdにやらせる

→ttyに新しいデバイスが刺さったときにそのfdをnanostickとして登
録し、それを元にioctlを発行してldiscを切り替える

→udevルールをもとにCH340のみにデバイスを絞る

まとめ 作ったところ

・input subsystemに操作を流し込むまでの流れ

① プロトコルに沿ったバイト列を/dev/ttyUSBで受け取る

②ldiscを書き換えてttyに流れてきたバイト列を適当な構造体
(ns_action)に詰め、値に応じた意味付けをしてinput subsystemに流す

③ns_actionを元にinput_report_rel()などのカーネルAPIを叩く

イベントが飛んできている様子

Event: time 1767801399.646170, type 1 (EV_KEY), code 272 (BTN_LEFT), value 1

Event: time 1767801399.646170, -------------- SYN_REPORT ------------

Event: time 1767801407.882230, type 1 (EV_KEY), code 272 (BTN_LEFT), value 0

Event: time 1767801407.882230, -------------- SYN_REPORT ------------

Event: time 1767804012.360843, type 2 (EV_REL), code 0 (REL_X), value -40

Event: time 1767804012.360843, -------------- SYN_REPORT ------------

Event: time 1767804012.575086, type 2 (EV_REL), code 0 (REL_X), value -30

Event: time 1767804012.575086, -------------- SYN_REPORT ------------

Event: time 1767804012.789080, type 2 (EV_REL), code 0 (REL_X), value -20

Event: time 1767804012.789080, -------------- SYN_REPORT ------------

Event: time 1767804013.004038, type 2 (EV_REL), code 0 (REL_X), value -10

Event: time 1767804013.004038, -------------- SYN_REPORT ------------

Event: time 1767804013.431825, type 2 (EV_REL), code 0 (REL_X), value 10

	Slide 1: 親指二軸ジョイスティックによる ホームポジション維持型ポインティングデバイスの開発
	Slide 2: 入力がGUIに反映される流れ
	Slide 3
	Slide 4: 何をする必要があるか？
	Slide 5: じゃあどう流すか
	Slide 6: ldisc(Line Discipline)とは何か
	Slide 7: ldiscを採用するメリット
	Slide 8: プロトコルの詳細
	Slide 9: ここで問題がある
	Slide 10
	Slide 11: まとめ　作ったところ
	Slide 12: イベントが飛んできている様子

